LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
M.Sc. DEGREE EXAMINATION – PHYSICS
SECOND SEMESTER – APRIL 2014
PH 2811/2808 - QUANTUM MECHANICS
Date : 01/04/2014 Dept. No. Max. : 100 Marks Time : 09:00-12:00 Max. : 100 Marks Max. : 100 Marks
$\mathbf{PARTA} $ (10 × 2 = 20)
Answer ALL the questions $(10 \land 2 - 20)$
1. State heisenberg's uncertainty principle. $\begin{bmatrix} \partial & \partial^2 \end{bmatrix}$
2. Evaluate the commutator $\left[\frac{\partial x}{\partial x^2}, \frac{\partial x^2}{\partial x^2}\right]$.
3. Determine the eigenvalues of a parity operator.
4. What are spherical harmonics? Are they mutually orthogonal?
5. What is an orthonormal basis?
6. If A and B are two operators, then show that $[A^{-1}[A,B]] = 2B$
7. What are antisymmetric wave functions?
8. Show that commuting operators have simultaneous eigen functions.
9. Explain variation principle.
10. What is Rayleigh ratio?
PART – B
Answer any FOUR questions $(4 \times 7.5 = 30)$
 11. (a) Show that the eigen values of a Hermitian operator are real. (b) If A and B are Hermitian operators, show that (AB + BA) is Hermitian and (AB – BA) is not Hermitian. (3.5 + 4)
12. Obtain the normalized wave function for a particle trapped in the potential $V(x) = 0$ for $0 < x < a$ and $V(x) = \infty$ otherwise.
13. (a) With an example explain a linear operator (b) If A and B are two operators defined by $A\Psi(x) = \Psi(x) + x$
and $B\Psi(x) = \frac{d\Psi}{dx} + 2\Psi(x)$ check A and B for their linearity (2.5+5)
14. If the components of arbitrary vectors A and B commute with those of σ . Show that (σ . A) (σ . B) = A . B + i σ .(A x B)
15. Obtain the second order correction for a non-degenerative energy level.
PARI – C
Answer any FOUR questions $(4 \times 12.5 = 50)$
16. State and prove Ehernfest's theorem
17. Solve the Schrodinger equation for a linear harmonic oscillator. Sketch the first two eigen functions of the system.
18. Discuss and distinguish between Schrodinger and Heisenberg pictures of time evolution.

- 19. What are symmetric and antisymmetric wave functions? Show that the symmetry character of a wave function does not change with time. Explain how symmetric and antisymmetric wave functions are constructed from unsymmetrized solution of the schrodinger equation of a system of indistinguishable particles. (3+3+6.5)
- **20.** Explain the effect of an electric field on the energy levels of a plane rotator.